Abstract
AbstractBackgroundMixed-effects models are the current standard for the analysis of behavioral studies in psycholinguistics and related fields, given their ability to simultaneously model crossed random effects for subjects and items. However, they are hardly applied in neuroimaging and psychophysiology, where the use of mass univariate analyses in combination with permutation testing would be too computationally demanding to be practicable with mixed models.New methodHere, we propose and validate an analytical strategy that enables the use of linear mixed models (LMM) with crossed random intercepts in mass univariate analyses of EEG data (lmeEEG). It avoids the unfeasible computational costs that would arise from massive permutation testing with LMM using a simple solution: removing random-effects contributions from EEG data and performing mass univariate linear analysis and permutations on the obtained marginal EEG.ResultslmeEEG showed excellent performance properties in terms of power and false positive rate.Comparison with existing methodslmeEEG overcomes the computational costs of standard available approaches (our method was indeed more than 300 times faster).ConclusionslmeEEG allows researchers to use mixed models with EEG mass univariate analyses. Thanks to the possibility offered by the method described here, we anticipate that LMM will become increasingly important in neuroscience. Data and codes are available atosf.io/kw87a. The codes and a tutorial are also available atgithub.com/antovis86/lmeEEG.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献