Adaptation of Graph Convolutional Neural Networks and Graph Layer-wise Relevance Propagation to the Spektral library with application to gene expression data of Colorectal Cancer patients

Author:

Lutz Sebastian,Auer FlorianORCID,Hartmann Dennis,Chereda Hryhorii,Beißbarth Tim,Kramer FrankORCID

Abstract

AbstractMotivationColorectal Cancer has the second-highest mortality rate worldwide, which requires advanced diagnostics and individualized therapies to be developed. Information about the interactions between molecular entities provides valuable information to detect the responsible genes driving cancer progression. Graph Convolutional Neural Networks are able to utilize the prior knowledge provided by interaction networks and the Spektral library adds a performance increase in contrast to standard implementations. Furthermore, machine learning technology shows great potential to assist medical professionals through guided clinical decision support. However, the deep learning models are limited in their application in precision medicine due to their lack to explain the factors contributing to a prediction. Adaption of the Graph Layer-Wise Relevance Propagation methodology to graph-based deep learning models allows to attribute the learned outcome to single genes and determine their relevance. The resulting patient-specific subnetworks then can be used to identify potentially targetable genes.ResultsWe present an implementation of Graph Convolutional Neural Networks using the Spektral library in combination with adapted functions for Graph Layer-Wise Relevance Propagation. Deep learning models were trained on a newly composed large gene expression dataset of Colorectal Cancer patients with different molecular interaction networks as prior knowledge: Protein-protein interactions from the Human Protein Reference Database and STRING, and pathways from the Reactome database. Our implementation performs comparably with the original implementation while reducing the computation time, especially for large networks. Further, the generated subnetworks are similar to those of the initial implementation and reveal possible, and even more distant, biomarkers and drug targets.AvailabilityThe implementation details and corresponding dataset including their visualizations can be found athttps://github.com/frankkramer-lab/spektral-gcnn-glrp-on-crc-dataContactsebastian.lutz@uni-a.de

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3