RepairSwitch: simultaneous functional assessment of homologous recombination vs end joining DNA repair pathways in living cells

Author:

Steinberg Ruchama C.,Liu Jianyong,Vaghasia Ajay M.,Giovinazzo Hugh,Pham Minh-Tam,Tselenchuk Dimitri,Chikarmane Roshan,Haffner Michael C.,Nelson William G.,Yegnasubramanian SrinivasanORCID

Abstract

ABSTRACTDNA repair pathways are frequently defective in human cancers. DNA double strand breaks (DSBs) are most often repaired by either homologous recombination (HR) or non-homologous end joining (NHEJ). Alterations in repair pathways can indicate sensitivity to therapeutic agents such as PARP inhibitors, cisplatin, and immunotherapy. Thus, functional assays to measure rates of HR and NHEJ are of significant interest. Several methods have been developed to measure rates of HR or NHEJ; however, there is a need for functional cell-based assays that can measure rates by both major DNA DSB pathways simultaneously. Here, we describe the RepairSwitch assay, a flow cytometry assay to assess rates of HR and NHEJ mediated repair of Cas9 programmed DSB simultaneously using a novel fluorescence switching reporter system. The assay exhibits low background signal and is capable of detecting rare repair events in the 1 in 10,000 range. We demonstrate the utility of RepairSwitch by measuring the potency of inhibitors of ATM (KU-60019, KU-55933), DNA-PK (NU7441), and PARP (Olaparib) on modulating DSB repair rates in HEK293FT cells. The selective ATM inhibitor KU-60019 inhibited HR rates with IC50 of 915 nM. Interestingly, KU-60019 exposure led to a dose responsive increase in rates of NHEJ. In contrast, the less selective ATM inhibitor KU-55933, which also has activity on DNA-PK, showed inhibition of both HR and NHEJ. The selective DNA-PK inhibitor NU7441 inhibited NHEJ efficiency with an IC50 of 299 nM, and showed a dose responsive increase in HR. The PARP inhibitor Olaparib showed lower potency in modulating HR and NHEJ. We next used the RepairSwitch assay to assess how pharmacological and genetic inhibition of DNA methyltransferases (DNMT) impacted rates of HR and NHEJ. The DNMT inhibitor decitabine reduced HR, but increased rates of NHEJ, both in a dose responsive manner, in both HEK293FT and HCT116 cells (IC50 for HR of 187 nM and 1.4 uM respectively). Knockout of DNMT1 and DNMT3B increased NHEJ, while knockout of DNMT3B, but not DNMT1, reduced HR. These results illustrate the utility of RepairSwitch as a functional assay for measuring changes in rates of DSB repair induced by pharmacological or genetic perturbation. Furthermore, the findings illustrate the potential for one DNA repair mechanism to compensate in part for loss of another. Finally, we showed that inhibition of DNMT can lead to reduction of HR and increase in NHEJ, providing some additional insight into recently observed synergy of DNMT inhibitors with PARP inhibitors for cancer treatment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3