Abstract
Abstract53BP1 is a chromatin-binding DNA repair protein that promotes DNA double-strand break repair through recruitment of downstream effectors including RIF1, shieldin, and CST. The structural basis of the protein-protein interactions within the 53BP1-RIF1-shieldin-CST pathway that are essential for its DNA repair activity are largely unknown. Here we used AlphaFold2-Multimer (AF2) to predict all possible pairwise combinations of proteins within this pathway and provide structural models of seven previously characterized interactions. This analysis also predicted an entirely novel binding interface between the HEAT-repeat domain of RIF1 and the eIF4E-like domain of SHLD3. Extensive interrogation of this interface through both in vitro pulldown analysis and cellular assays supports the AF2-predicted model and demonstrates that RIF1-SHLD3 binding is essential for shieldin recruitment to sites of DNA damage, and for its role in antibody class switch recombination. Direct physical interaction between RIF1 and SHLD3 is therefore essential for 53BP1-RIF1-shieldin-CST pathway activity.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献