Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures

Author:

Yi Xu,Fritzsching Keith J.ORCID,Rogawski RivkahORCID,Xu YunyaoORCID,McDermott Ann E.ORCID

Abstract

AbstractWhile low temperature NMR holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) inE. coliDHFR at 105K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of Ni+1to Ψi. With selective15N and13C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in13C’-15N correlation spectrum. For this unique amide we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin 114 ± 7 for the major peak, and 150 ± 8 and 164 ± 16° for the minor peak as contrasted with 118 for the X-ray crystal structure (and 118-130 for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low temperature NMR spectra.Significance StatementUnderstanding protein conformational flexibility is essential for insights into the molecular basis of protein function and the thermodynamics of proteins. Here we investigate the ensemble of protein backbone conformations in a frozen protein freezing, which is likely a close representation for the ensemble in rapid equilibrium at room temperature. Various conformers are spectrally resolved due to the exquisite sensitivity of NMR shifts to local conformations, and NMR methods allow us to directly probe the torsion angles corresponding to each band of chemical shifts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3