Analysis of nucleotide variations in human g-quadruplex forming regions associated with disease states

Author:

Neupane Aryan,Chariker Julia H.,Rouchka Eric C.ORCID

Abstract

ABSTRACTWhile the role of G4 G quadruplex structures has been identified in cancers and metabolic disorders, single nucleotide variations (SNVs) and their effect on G4s in disease contexts have not been extensively studied. The COSMIC and CLINVAR databases were used to detect SNVs present in G4s to identify sequence level changes and their effect on alteration of G4 secondary structure. 37,515 G4 SNVs in the COSMIC database and 2,115 in CLINVAR were identified. Of those, 7,236 COSMIC (19.3%) and 416 (18%) of the CLINVAR variants result in G4 loss, while 2,728 (COSMIC) and 112 (CLINVAR) SNVs gain a G4 structure. The gene ontology term “GnRH (Gonadotropin-releasing hormone) secretion” is enriched in 21 genes in this pathway that have a G4 destabilizing SNV. Analysis of mutational patterns in the G4 structure show a higher selective pressure (3-fold) in the coding region on the template strand compared to the non-template strand. At the same time, an equal proportion of SNVs were observed among intronic, promoter and enhancer regions across strands. Using GO and pathway enrichment, genes with SNVs for G4 forming propensity in the coding region are enriched for Regulation of Ras protein signal transduction and Src homology 3 (SH3) domain binding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3