Study Protocol for the Pilot Evaluation for SMartphone-adaptable Artificial Intelligence for PRediction and DeTection of Left Ventricular Systolic Dysfunction (The SMART-LV Pilot Study Protocol)

Author:

Dhingra Lovedeep SinghORCID,Aminorroaya AryaORCID,Sangha Veer,Khunte AkshayORCID,Oikonomou Evangelos KORCID,Mortazavi Bobak JORCID,McNamara Robert,Herrin JephORCID,Wilson Francis PORCID,Krumholz Harlan MORCID,Khera RohanORCID

Abstract

ABSTRACTIntroductionDespite a prevalence of 3-5% among adults, asymptomatic left ventricular systolic dysfunction (LVSD) remains underdiagnosed. There is a critical need for an accurate and widely accessible screening strategy for LVSD, given its association with preventable morbidity and premature mortality. A novel deep learning approach has demonstrated the ability to detect LVSD directly from ECG images, with retrospective validation across multiple institutions. There is a lack of prospective validation. In this pilot study, we evaluate the feasibility of screening and recruiting individuals for prospective echocardiography based on an image-based artificial intelligence (AI)-ECG algorithm applied to the ECG repository at a large academic medical center.Research Methods and AnalysisThis is the protocol for a prospective cohort study in outpatient primary care clinics of the Yale New Haven Hospital (YNHH). Adult patients who have undergone a 12-lead ECG without subsequent echocardiogram as a part of routine clinical care within 90 days of the ECG will be identified in the electronic health record (EHR). The AI-ECG model for LVSD will be deployed to YNHH ECG repository to define the probability of LVSD, identifying 5 patients each with high and low probability of LVSD. After discussion with primary care physicians, and subsequent contact by the study team, screened participants will be invited for and undergo an echocardiogram. The study participants and the cardiologists conducting the echocardiograms will be blinded to the results of the AI-ECG screen. The analysis will focus on feasibility metrics: the proportion (i) of all patients undergoing ECGs who have high probability of LVSD without subsequent echocardiogram, (ii) of patients who agree to participate in the study, and (iii) that undergo an echocardiogram. A descriptive exploration of the comparison of the AI-ECG and echocardiogram results will also be reported.Ethics and DisseminationAll patient EHR data required for assessing eligibility and conducting the AI-ECG screening will be accessed through secure servers approved for protected health information. Potential participants will only be contacted after they have discussed the study information with their primary care physician. All participants will be required to provide written informed consent before participation and data will be deidentified prior to analysis. This study protocol has been approved by the Yale Institutional Review Board (Protocol Number: 2000034006) and has been registered atClinicalTrials.gov(Identifier:NCT05630170). The results of the future validation study will be published in peer-reviewed journals and summaries will be provided to the study participants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3