An Expert-guided Hierarchical Graph Attention Network for Post-traumatic Stress Disorder Highly-associative Genetic Biomarkers Identification

Author:

Zhang Qi,Han Yang,Lam Jacqueline CK,Bai Ruiqiao,Gozes Illana,Li Victor OK

Abstract

AbstractPost-traumatic Stress Disorder (PTSD) is a common debilitating mental disorder, that occurs in some individuals following extremely traumatic events. Traditional identification of Genetic Markers (GM) for PTSD is mainly based on a statistical clinical approach by comparing PTSD patients with normal controls. However, these statistical studies present limitations, often generating inconsistent results. Few studies have yet examined thoroughly the role of somatic mutations, PTSD disease pathways and their relationships. Capitalizing on deep learning techniques, we have developed a novel hierarchical graph attention network to identify highly correlational GM (HGMs) of PTSD. The network presents the following novelties: First, both a hierarchical graph structure and a graph attention mechanism have been integrated into a model to develop a graph attention network (GAtN) model. Second, domain-specific knowledge, including somatic mutations, genes, PTSD pathways and their correlations have been incorporated into the graph structures. Third, 12 somatic mutations having high or moderate impacts on proteins or genes have been identified as the potential HGMs for PTSD. Fourth, our study is carefully guided by prominent PTSD literature or clinical experts of the field; any high saliency HGMs generated from our model are further verified by existing PTSD-related authoritative medical journals. Our study illustrates the utility and significance of a hybrid approach, integrating both AI and expert-guided/domain-specific knowledge for thorough identification of biomarkers of PTSD, while building on the nature of convergence and divergence of PTSD pathways. Our expert-guided AI-driven methodology can be extended to other pathological-based HGM identification studies; it will transform the methodology of biomarker identification for different life-threatening diseases to speed up the complex lengthy procedures of new biomarkers identification.

Publisher

Cold Spring Harbor Laboratory

Reference122 articles.

1. Post-Traumatic Stress Disorder

2. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability

3. Lu, L. Machine learning approaches for biomarker identification and subgroup discovery for post-traumatic stress disorder, The University of Memphis, (2020).

4. Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative

5. APA. Diagnostic and Statistical Manual of Mental Disorders. 5th edn, Vol. 21 (American Psychiatric Association (APA), 2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3