Balanced nutrient requirements for maize in the Northern Nigerian Savanna: Parameterization and validation of QUEFTS model

Author:

Shehu Bello M.ORCID,Lawan Bassam A.,Jibrin Jibrin M.,Kamara Alpha Y.,Mohammed Ibrahim B.,Rurinda Jairos,Zingore Shamie,Craufurd Peter,Vanlauwe Bernard,Merckx Roel

Abstract

AbstractEstablishing balanced nutrient requirements for maize (Zea mays L.) in the Northern Nigerian Savanna is paramount to develop site-specific fertilizer recommendations to increase maize yield, profits of farmers and avoid negative environmental impacts of fertilizer use. The model QUEFTS (QUantitative Evaluation of Fertility of Tropical Soils) was used to estimate balanced nitrogen (N), phosphorus (P) and potassium (K) requirements for maize production in the Northern Nigerian Savanna. Data from on-farm nutrient omission trials conducted in 2015 and 2016 rainy seasons in two agro-ecological zones in the Northern Nigerian Savanna (i.e. Northern Guinea Savanna “NGS” and Sudan Savanna “SS”) were used to parameterize and validate the QUEFTS model. The relations between indigenous soil N, P, and K supply and soil properties were not well described with the QUEFTS default equations and consequently new and better fitting equations were derived. The average fertilizer recovery fractions of N, P and K in the NGS were generally comparable with the QUEFTS default values, but lower recovery fractions of these nutrients were observed in the SS. The parameters of maximum accumulation (a) and dilution (d) in kg grain per kg nutrient for the QUEFTS model obtained were respectively 35 and 79 for N, 200 and 527 for P and 25 and 117 for K in the NGS zone and 32 and 79 for N, 164 and 528 for P and 24 and 136 for K in the SS zone. The model predicted a linear relationship between grain yield and above-ground nutrient uptake until yield reached about 50 to 60% of the yield potential. When the yield target reached 60% of the potential yield (i.e. 6.0 tonnes per hectare), the model showed above-ground nutrient uptake of 19.4, 3.3 and 23.0 kg N, P, and K, respectively, per one tonne of maize grain in the NGS, and 17.3, 5.3 and 26.2 kg N, P and K, respectively, per one tonne of maize grain in the SS. These results suggest an average NPK ratio in the plant dry matter of about 5.9:1:7.0 for maize in the NGS and 3.3:1:4.9 for maize in the SS. There was a close agreement between observed and parameterized QUEFTS predicted yields across the two agro-ecological zones (R2 = 0.70 for the NGS and 0.86 for the SS). We concluded that the QUEFTS model can be used for balanced nutrient requirement estimations and development of site-specific fertilizer recommendations for maize intensification in the Northern Nigerian Savanna.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Response of maize to nitrogen, phosphorus, and potassium fertilizers in the Savanna zones of Nigeria;Commun. Soil Sci. Plant Anal,1995

2. Economic performance of maize under incorporated legumes and Nitrogen in Northern Guinea Savanna zone of Nigeria;Asian J. Agric. Res,2016

3. Anderson, J.M. , Ingram, J.S.I. , 1993. Tropical Soil Biology and Fertility (TSBF). A hand book of methods, 2nd ed. CABI International, Wallingford, UK.

4. Interactions of nitrogen with other nutrients and water: Effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution;Adv. Agron,2005

5. Gains in Grain Yield of Early Maize Cultivars Developed During Three Breeding Eras under Multiple Environments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3