Author:
Normand Elizabeth,Browning Catherine,Zervas Mark
Abstract
SUMMARYGene expression is a dynamic process, which is highly coordinated during development to ensure the proper allocation and identity of neuronal cell types within the brain. Equally important during neurodevelopment is how cohorts of neurons establish axonal projections that innervate terminal target sites. We sought to bridge the temporal dynamics of gene expression, within a specific genetic lineage, to the establishment of neuronal circuits derived from cohorts of the lineage-specific progenitors. A central goal was to be able to accomplish genetic inducible circuit mapping non-invasively and with commonly available CreER/loxP technology. Specifically, we genetically marked thalamic neuron progenitors that expressed the transcription factor Gbx2 at an early embryonic stage and tracked the formation of lineage-derived thalamocortical axons during embryogenesis. We then assessed the neural circuitry at an early postnatal stage. We show that the temporal specificity of lineage marking provides a high degree of clarity for following neural circuit development. We also determined that the onset and duration of gene expression can delineate subsets of neural circuits derived from a common lineage. For example, we uncovered a novel contribution of Gbx2-expressing progenitors to midbrain dopamine neurons and dopaminergic axons of the medial forebrain bundle. We anticipate that this system can be instructive in elucidating changes in neural circuit development in both normal development and in mutant mice in which neural circuit formation is altered.
Publisher
Cold Spring Harbor Laboratory