A machine learning algorithm predicts molecular subtypes in pancreatic ductal adenocarcinoma with differential response to gemcitabine-based versus FOLFIRINOX chemotherapy

Author:

Kaissis GeorgiosORCID,Ziegelmayer Sebastian,Lohöfer Fabian,Steiger Katja,Algül Hana,Muckenhuber Alexander,Yen Hsi-Yu,Rummeny Ernst,Friess Helmut,Schmid Roland,Weichert Wilko,Siveke Jens T.,Braren Rickmer

Abstract

AbstractPurposeDevelopment of a supervised machine-learning model capable of predicting clinically relevant molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) from diffusion-weighted-imaging-derived radiomic features.MethodsThe retrospective observational study assessed 55 surgical PDAC patients. Molecular subtypes were defined by immunohistochemical staining of KRT81. Tumors were manually segmented and 1606 radiomic features were extracted withPyRadiomics. A gradient-boosted-tree algorithm (XGBoost) was trained on 70% of the patients (N=28) and tested on 30% (N=17) to predict KRT81+ vs. KRT81-tumor subtypes. The average sensitivity, specificity and ROC-AUC value were calculated. Chemotherapy response was assessed stratified by subtype. Radiomic feature importance was ranked.ResultsThe mean±STDEV sensitivity, specificity and ROC-AUC were 0.90±0.07, 0.92±0.11, and 0.93±0.07, respectively. Patients with a KRT81+ subtype experienced significantly diminished median overall survival compared to KRT81-patients (7.0 vs. 22.6 months, HR 1.44, log-rank-test P=<0.001) and a significantly improved response to gemcitabine-based chemotherapy over FOLFIRINOX (10.14 vs. 3.8 months median overall survival, HR 0.85, P=0.037) compared to KRT81-patients, who responded significantly better to FOLFIRINOX over gemcitabine-based treatment (30.8 vs. 13.4 months median overall survival, HR 0.88, P=0.027).ConclusionsThe machine-learning based analysis of radiomic features enables the prediction of subtypes of PDAC, which are highly relevant for overall patient survival and response to chemotherapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3