Human body prediction of size and shape: a hormonal framework

Author:

van Vugt JeroenORCID

Abstract

ABSTRACTTo achieve high prediction accuracy with minimal inputs from online retail respondents, a method was developed and tested to predict the size and shape of the human body in 3D using a hormonal framework. The prediction method is based on geometric morphometrics, image analysis, and kernel partial least squares regression. The inputs required are answers to three closed-ended questions and a passport photo. Prediction accuracy was tested with the 3D body scan dataset of the Civilian American and European Surface Anthropometry Resource project. Results from the test dataset showed that approximately 82% of the error expectations of landmarks followed a log-normal distribution with an expectation of 8.816 mm and standard deviation of 1.180 mm. The remaining 18% of the error expectations of landmarks followed a log-normal distribution with an expectation of 18.454 mm and standard deviation of 8.844 mm, which may herald future research. Benchmarked with another method, the proposed method features much less input. In addition to high accuracy, the method in this paper allows for visualisation of results as real-size meshes in millimeters.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Melmed, S. , Polonsky, K. S. , Larsen, P. R. & Kronenberg, H. M. Williams Textbook of Endocrinology (Elsevier, Philadelphia, PA, 2015).

2. Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland Science, New York, NY, 2002).

3. Three-Dimensional Laser Surface Imaging and Geometric Morphometrics Resolve Frontonasal Dysmorphology in Schizophrenia

4. Body shape and psychiatric diagnosis revisited;Int. J. Psychiatry Clin. Pract,2010

5. Hormones and schizophrenia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3