NAT/NCS2-hound: A Webserver for the detection and evolutionary classification of prokaryotic and eukaryotic nucleobase–cation symporters of the NAT/NCS2 family

Author:

Chaliotis A,Vlastaridis P,Ntountoumi C,Botou M,Yalelis V,Lazou P,Tatsaki E,Mossialos D,Frillingos S,Amoutzias GDORCID

Abstract

AbstractNucleobase transporters are important for supplying the cell with purines and/or pyrimidines, for controlling the intracellular pool of nucleotides and for obtaining exogenous nitrogen/carbon sources for the metabolism. Nucleobase transporters are also evaluated as potential targets for antimicrobial therapies, since several pathogenic microorganisms rely on purine/pyrimidine salvage from their hosts. The majority of known nucleobase transporters belong to the evolutionarily conserved and ubiquitous NAT/NCS2 protein family. Based on a large-scale phylogenetic analysis that we performed on thousands of prokaryotic proteomes, we have developed a webserver that can detect and distinguish this family of transporters from other homologous families that recognize different substrates. We can further categorize these transporters to certain evolutionary groups with distinct substrate preferences. The webserver scans whole proteomes and graphically displays which proteins are identified as NAT/NCS2, to which evolutionary groups and subgroups they belong to and which conserved motifs they have. For key subgroups and motifs, the server displays annotated information from published crystal-structures and mutational studies pointing to key functional amino acids that may help experts assess the transport capability of the target sequences. The server is 100% accurate in detecting NAT/NCS2 family members. We also used the server to analyze 9109 prokaryotic proteomes and identified Clostridia, Bacilli, β- and γ-Proteobacteria, Actinobacteria and Fusobacteria as the taxa with the largest number of NAT/NCS2 transporters per proteome. An analysis of 120 representative eukaryotic proteomes also demonstrates the server’s capability of correctly analyzing this major lineage, with plants emerging as the group with the highest number of NAT/NCS2 members per proteome.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Insights to the evolution of Nucleobase-Ascorbate Transporters (NAT/NCS2 family) from the Cys-scanning analysis of xanthine permease XanQ;Int J Biochem Mol Biol,2012

2. The nucleobase–ascorbate transporter (NAT) family: genomics, evolution, structure–function relationships and physiological role

3. Nucleobase and nucleoside transport and integration into plant metabolism;Front Plant Sci,2014

4. Identification and Functional Characterization of the First Nucleobase Transporter in Mammals

5. The sodium-dependent ascorbic acid transporter family SLC23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3