Abstract
SUMMARYIn most vertebrates, the upper digestive tract is composed of muscularised jaws linked to the esophagus that permit food uptake and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to Met/HGF signalling for antero-posterior migration of esophagus muscle progenitors, where HGF ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulate esophagus myogenesis and identify distinct genetic signatures that can be used as a framework to interpret pathologies arising within CPM derivatives.
Publisher
Cold Spring Harbor Laboratory