A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data

Author:

Beaton DerekORCID,Saporta Gilbert,Abdi Hervé,

Abstract

AbstractCurrent large scale studies of brain and behavior typically involve multiple populations, diverse types of data (e.g., genetics, brain structure, behavior, demographics, or “mutli-omics,” and “deep-phenotyping”) measured on various scales of measurement. To analyze these heterogeneous data sets we need simple but flexible methods able to integrate the inherent properties of these complex data sets. Here we introduce partial least squares-correspondence analysis-regression (PLS-CA-R) a method designed to address these constraints. PLS-CA-R generalizes PLS regression to most data types (e.g., continuous, ordinal, categorical, non-negative values). We also show that PLS-CA-R generalizes many “two-table” multivariate techniques and their respective algorithms, such as various PLS approaches, canonical correlation analysis, and redundancy analysis (a.k.a. reduced rank regression).

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Partial least squares regression and projection on latent structure regression (PLS Regression)’;Wiley Interdiscipinary Reviews: Computational Statistics,2010

2. Abdi, H. & Béra,. (2018), Correspondence analysis., in R. Alhajj & J. Rokne , eds, ‘Encyclopedia of Social Networks and Mining (2nd Edition)’, Springer Verlag, New York.

3. Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data’;Bécue-Bertaut;Computational Statistics & Data Analysis,2008

4. Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data.

5. Beaton, D. , Sunderland, K. . , Levine, B. , Mandtial, J. , Masellis, .M. , Swartt, R. H. , Troyer, A. K. , Binns, . A. , Abdi, H. , Strother, S. C. & others (2018), ‘Generalitation of the minimum covariance determinant algorithm for categorical and mixed data types’, bioRxiv p. 333005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3