Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage

Author:

Yoshimine Shoyo,Ogawa Shumpei,Horiguchi Hiroshi,Terao Masahiko,Miyazaki Atsushi,Matsumoto Kenji,Tsuneoka Hiroshi,Nakano Tadashi,Masuda Yoichiro,Pestilli FrancoORCID

Abstract

ABSTRACTPurposeWe investigated the impact of age-related macular degeneration (AMD) on visual acuity and the visual white matter.MethodsWe combined an adaptive cortical atlas and diffusion-weighted magnetic resonance imaging (dMRI) and tractography to separate optic radiation (OR) projections to different retinal eccentricities in human primary visual cortex. We exploited the known anatomical organization of the OR and clinically relevant data to segment the OR into three primary components projecting to fovea, mid- and far-periphery. We measured white matter tissue properties – (fractional anisotropy, linearity, planarity, sphericity) along the aforementioned three components of the optic radiation to compare AMD patients and controls.ResultsWe found differences in white matter properties specific to OR white matter fascicles projecting to primary visual cortex locations corresponding to the location of retinal damage (fovea). Additionally, we show that the magnitude of white matter properties in AMD patients’ correlates with visual acuity. In sum, we demonstrate a specific relation between visual loss, anatomical location of retinal damage and white matter damage in AMD patients. Importantly, we demonstrate that these changes are so profound that can be detected using magnetic resonance imaging data with clinical resolution. The conserved mapping between retinal and white matter damage suggests that retinal neurodegeneration might be a primary cause of white matter degeneration in AMD patients.ConclusionsThe results highlight the impact of eye disease on brain tissue, a process that may become an important target to monitor during the course of treatment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3