Physiological effects of enriched environment exposure and LTP induction in the hippocampus in vivo do not transfer faithfully to in vitro slices

Author:

Eckert Michael J.,Abraham Wickliffe C.

Abstract

A number of experimental paradigms use in vitro brain slices to test for changes in synaptic transmission and plasticity following a behavioral manipulation. For example, a number of previous studies have reported a variety of effects of environmental enrichment (EE) exposure on field potential responses in hippocampal slices, but in no study was is it known what changes had been elicited in vivo. In the present study, we recorded from the hippocampus in vivo while rats underwent a brief period of EE. There was no detectable EE-induced change in synaptic efficacy in the dentate gyrus in vivo, but there was an increase in cellular excitability. In slices prepared from the same animals, we failed to observe any evidence of the excitability increase. We next tested whether LTP induction in vivo was better preserved in vitro. However, when slices from these rats were examined, there was no observable change in perforant path synaptic strength, although there was a modest increase in excitability that correlated with the increased excitability observed in vivo. These findings suggest that synaptic changes induced in vivo either are not preserved faithfully or are difficult to detect in hippocampal slices, while changes in cellular excitability are better preserved.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3