Combining Inferred Regulatory and Reconstructed Metabolic Networks Enhances Phenotype Prediction in Yeast

Author:

Wang Zhuo,Danziger Samuel A.,Heavner Benjamin D.,Ma Shuyi,Smith Jennifer J.,Li Song,Herricks Thurston,Simeonidis Evangelos,Baliga Nitin S.,Aitchison John D.,Price Nathan D.

Abstract

AbstractGene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced REgulation And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote,Saccharomyces cerevisiae.IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM’s enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.Author SummaryThe integration of gene regulatory and metabolic network models is an important goal in computational biology, in order to develop methods that can identify the underlying mechanistic links in biological networks and advance metabolic engineering techniques. In this paper, we develop a framework called Integrated Deduced REgulation And Metabolism (IDREAM) that can improve our ability to predict phenotypes of microorganisms, and particularly it can address the challenges in evaluating phenotypic consequence of perturbing transcriptional regulation of metabolism in a eukaryotic cell. We compare the predictive performance of an IDREAMS. cerevisiaemodel with a PROM model using a TRN available from the YEASTRACT database. IDREAM outperforms PROM using any of three popular yeast metabolic models and across three experimental growth conditions, making it possible to identify subtle synthetic growth defects, and a new role for Oaf1 in the regulation of acetyl-CoA biosynthesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3