The Structure of the Human Multiple Exostoses 2 Gene and Characterization of Homologs in Mouse andCaenorhabditis elegans

Author:

Clines Gregory A.,Ashley Jennifer A.,Shah Sangeeta,Lovett Michael

Abstract

Hereditary multiple exostoses (EXT) is an autosomal dominant disorder characterized by multiple cartilage-capped outgrowths from the epiphyses of long bones. In some cases, these osteochondromas progress to malignant chondrosarcomas. Alterations in at least three genes (EXT1, EXT2, and EXT3) can cause this disorder. Two of these have been isolated (EXT1 andEXT2) and encode related members of a putative tumor suppressor family. We report here the genomic structure of the humanEXT2 gene consisting of 14 exons (plus 2 alternative exons) covering an estimated 108 kb of chromosome 11p11–13. We have derived the DNA sequences at all exon/intron boundaries throughout this gene—information that is important for the detailed study of mutations in EXT2. We have also characterized the mouse EXT2cDNA and have mapped the mouse locus to chromosome 2 betweenD2Mit15 and Pax6. This mouse homolog should enable transgenic knockout experiments to be initiated to further elucidate gene function. Interestingly, sequence comparisons reveal that the human and mouse EXT genes have at least two homologs in the invertebrate Caenorhabditis elegans, indicating that they do not function exclusively as regulators of bone growth. This observation opens the way for a functional analysis of these genes in nematodes and other lower organisms.[The sequence data described in this paper have been submitted to the GenBank data library under accession nos. U67353U67368 and U67837.]

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

Reference35 articles.

1. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1)

2. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates.

3. Delineation of a contiguous gene syndrome with multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation, caused by deletions in the short arm of chromosome 11.;Bartsch;Am. J. Hum. Genet.,1996

4. Characterization of a yeast artificial chromosome contig spanning the Huntington's disease gene candidate region

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3