Agrochemical pollution increases risk of human exposure to schistosome parasites

Author:

Halstead Neal T.,Hoover Christopher M.,Arakala Arathi,Civitello David J.,De Leo Giulio A.,Gambhir Manoj,Johnson Steve A.,Loerns Kristin A.,McMahon Taegan A.,Nguyen Karena,Raffel Thomas R.,Remais Justin V.,Sokolow Susanne H.,Rohr Jason R.

Abstract

SummaryRoughly 10% of the global population is at risk of schistosomiasis, a snail-borne parasitic disease that ranks among the most important water-based diseases of humans in developing countries1–3. Increased prevalence, infection intensity, and spread of human schistosomiasis to non-endemic areas has been consistently linked with water resource management related to agricultural expansion, such as dam construction, which has resulted in increased snail habitat1,4–6. However, the role of agrochemical pollution in human schistosome transmission remains unexplored, despite strong evidence of agrochemicals increasing snail-borne diseases of wildlife7–9 and a projected 2- to 5-fold increase in global agrochemical use by 205010 that will disproportionately occur in schistosome-endemic regions. Using a field mesocosm experiment, we show that environmentally relevant concentrations of fertilizer, the common herbicide atrazine, and the common insecticide chlorpyrifos, individually and as mixtures, increase densities of schistosome-infected snails by increasing the algae snails eat (fertilizer and atrazine) and decreasing densities of snail predators (chlorpyrifos). Epidemiological models indicate that these agrochemical effects can increase transmission of schistosomiasis. Hence, the rapid agricultural changes occurring in schistosome-endemic regions11,12 that are driving increased agrochemical use and pollution could potentially increase the burden of schistosomiasis in these areas. Identifying agricultural practices or agrochemicals that minimize disease risk will be critical to meeting growing food demands while improving human wellbeing13,14.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3