The visual system of the genetically tractable crustacean Parhyale hawaiensis: diversification of eyes and visual circuits associated with low-resolution vision

Author:

Ramos Ana Patricia,Gustafsson Ola,Labert Nicolas,Salecker Iris,Nilsson Dan-Eric,Averof Michalis

Abstract

AbstractBackgroundArthropod eyes have diversified during evolution to serve multiple needs, such as finding mates, hunting prey, and navigating in complex surroundings under varying light conditions. This diversity is reflected in the optical apparatus, photoreceptors and neural circuits that underpin vision. While this diversity has been extensively documented, our ability to genetically manipulate the visual system to investigate its function is largely limited to a single species, the fruitfly Drosophila melanogaster. Here, we describe the visual system of Parhyale hawaiensis, an amphipod crustacean for which we have established tailored genetic tools.ResultsAdult Parhyale have apposition-type compound eyes made up of ∼50 ommatidia. Each ommatidium contains four photoreceptor cells with large rhabdomeres (R1-4), expected to be sensitive to the polarisation of light, and one photoreceptor cell with a smaller rhabdomere (R5). The two types of photoreceptors express different opsins, belonging to families with distinct wavelength sensitivities. Using the cis.-regulatory regions of opsin genes, we established transgenic reporters expressed in each photoreceptor cell type. Based on these reporters, we show that R1-4 and R5 photoreceptors extend axons to the first optic lobe neuropil, revealing striking differences compared with the photoreceptor projections found in related crustaceans and insects. Investigating visual function, we show that Parhyale has a positive phototactic response and is capable of adapting its eyes to different levels of light intensity.ConclusionsWe propose that the visual system of Parhyale serves low-resolution visual tasks, such as orientation and navigation, based on broad gradients of light intensity and polarisation. Optic lobe structure and photoreceptor projections point to significant divergence from the conserved visual circuits found in other malacostracan crustaceans and insects, which could be associated with a shift to low-resolution vision. Our study provides the foundation for research in the visual system of this genetically tractable species.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3