Designed Nanoparticles Elicit Cross-Reactive Antibody Responses To Conserved Influenza Virus Hemagglutinin Stem Epitopes

Author:

McCraw Dustin M.,Myers Mallory L.,Gulati Neetu M.,Gallagher John R.,Kim Alexander J.,Torian Udana,Harris Audray K.

Abstract

AbstractDespite the availability of seasonal vaccines and antiviral medications, influenza virus continues to be a major health concern and pandemic threat due to the continually changing antigenic regions of the major surface glycoprotein, hemagglutinin (HA). One emerging strategy for the development of more efficacious seasonal and universal influenza vaccines is structure-guided design of nanoparticles that display conserved regions of HA, such as the stem. Using the H1 HA subtype to establish proof of concept, we found that an alpha-helical fragment (helix-A) from the conserved stem region can be displayed on nanoparticles. The stem region of HA on these nanoparticles is immunogenic and the nanoparticles are biochemically robust in that heat exposure did not destroy the particles and immunogenicity was retained. Furthermore, H1-nanoparticles protected mice from lethal challenge with H1N1 influenza virus. Importantly, antibodies elicited by these nanoparticles demonstrated homosubtypic and heterosubtypic cross-reactivity. The helix-A stem nanoparticle design represents a novel approach to display several hundred copies of non-trimeric conserved HA stem epitopes on vaccine nanoparticles. This design concept provides a new approach to universal influenza vaccine development strategies and opens up opportunities for the development of nanoparticles with broad coverage over many antigenically diverse influenza HA subtypes.SignificanceInfluenza virus is a public health issue that affects millions of people globally each year. Commercial influenza vaccines are based on the hemagglutinin (HA) surface glycoprotein, which can change antigenically every year, demanding the manufacture of newly matched vaccines annually. HA stem epitopes have a higher degree of conservation than HA molecules contained in conventional vaccine formulations and we demonstrate that we are able to design nanoparticles that display hundreds of HA stem fragments on nanoparticles. These designed nanoparticles are heat-stable, elicit antibodies to the HA stem, confer protection in mouse challenge models, and show cross-reactivity between HA subtypes. This technology provides promising opportunities to improve seasonal vaccines, develop pandemic preparedness vaccines, and facilitate the development of a universal influenza vaccine.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3