Nutrient stoichiometry shapes microbial coevolution

Author:

Larsen Megan L.,Wilhelm Steven W.,Lennon Jay T.ORCID

Abstract

ABSTRACTCoevolution is a force contributing to the generation and maintenance of biodiversity. It is influenced by environmental conditions including the scarcity of essential resources, which can drive the evolution of defense and virulence traits. We conducted a long-term chemostat experiment where the marine cyanobacterium Synechococcus was challenged with a lytic phage under nitrogen (N) or phosphorus (P) limitation. This manipulation of nutrient stoichiometry altered the stability of host-parasite interactions and the underlying mode of coevolution. By assessing infectivity with >18,000 pairwise challenges, we documented directional selection for increased phage resistance, consistent with arms-race dynamics while phage infectivity fluctuated through time, as expected when coevolution is driven by negative frequency-dependent selection. The resulting infection networks were 50 % less modular under N-versus P-limitation reflecting host-range contraction and asymmetric coevolutionary trajectories. Nutrient stoichiometry affects eco-evolutionary feedbacks in ways that may alter the dynamics and functioning of environmental and host-associated microbial communities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3