Synthesising environmental, epidemiological, and genetic data to assist decision making for onchocerciasis elimination

Author:

Shrestha HimalORCID,McCulloch Karen,Chisholm Rebecca H,Armoo Samuel,Vierigh Francis,Sirwani Neha,Crawford Katie E,Osei-Atweneboana Mike,Grant Warwick N,Hedtke Shannon MORCID

Abstract

AbstractBackgroundPopulation genetics is crucial for understanding the transmission dynamics of diseases like onchocerciasis. Landscape genetics identifies the ecological features that impact genetic variation between sampling sites. Here, we have used a landscape genetics framework to understand the relationship between environmental features and gene flow of the filarial parasiteOnchocerca volvulusand of its intermediate host and vector, blackflies in the genusSimulium. We analysed samples from the ecological transition region separating the savannah and forest ecological regions of Ghana, where the transmission ofO. volvulushas persisted despite almost half a century of onchocerciasis control efforts.MethodsWe generated a baseline microfilarial prevalence map from the point estimates of pre-ivermectin microfilarial prevalence from 47 locations in the study area. We analysed mitochondrial data from 164 parasites and 93 blackflies collected from 15 communities and four breeding sites, respectively. We estimated population genetic diversity and identified correlations with environmental variables. Finally, we compared baseline prevalence maps to movement suitability maps that were based on significant environmental variables.ResultsWe found that the resistance surfaces derived from elevation (r = 0.793, p = 0.005) and soil moisture (r = 0.507, p = 0.002) were significantly associated with genetic distance between parasite sampling locations. Similarly, for the vector populations, the resistance surfaces derived from soil moisture (r = 0.788, p = 0.0417) and precipitation (r = 0.835, p = 0.0417) were significant. The correlation between the baseline parasite prevalence map and the parasite resistance surface map was stronger than the correlation between baseline prevalence and the vector resistance surface map. The central parts of the transition region which were conducive for both the parasite and the vector gene flow were most strongly associated with high baseline onchocerciasis prevalence.ConclusionsWe present a framework for incorporating environmental, genetic, and prevalence data for identifying when ecological conditions are favourable for onchocerciasis transmission between communities. We identified areas with higher suitability for parasite and vector gene flow, which ultimately might help us gain deeper insights into defining transmission zones for onchocerciasis. Furthermore, this framework is translatable to other onchocerciasis endemic areas and to other vector-borne diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3