Micro- to nano-scale investigation of Precambrian metasediments: biogenicity and preservation in the 3.22 Ga Moodies Group (Barberton Greenstone Belt, S. Africa) and the 2.46 Ga Brockman Iron Formation (Hamersley Basin, W. Australia)

Author:

Bellon Hervé,Gieraltowski Jacek,Michaud François,Simon Gaëlle,Cerantola Stéphane,Homann Martin,Foster Ian,Ballet Pascal,Lalonde Stefan V.

Abstract

AbstractPrecambrian metasediments provide a unique archive for understanding Earth’s earliest biosphere, however traces of microbial life preserved in ancient rocks are often controversial. In this study we leveraged several micro- to nano-scale techniques to study filamentous structures previously reported in clastic sediments of the 3.22 Ga Moodies Group, Barberton Greenstone Belt, S. Africa. We performed petrographic, mineralogical, electron microprobe, confocal fluorescence and electron microscopy analyses of these structures in order to evaluate their biogenicity and syngenecity. We also examined drill core samples of deep-water iron formations from the 2.46 Ga Joffre member of the Brockman Iron Formation (Hamersley Basin, W. Australia) to better understand their potential biogenicity. In both cases, we aimed to resolve primary vs. secondary mineral assemblages and their relation to filamentous or sedimentary structures. In the Moodies Group samples, filamentous structures were resolved by confocal imaging and revealed to be crosscut by later metamorphic phases, highlighting their syngenetic nature. Three-dimensional imaging reveals that while the filamentous structures are not necessarily associated with grain boundaries (e.g., as organic coatings), they form both sheets and filaments, complicating their interpretation but not ruling out a biological origin. No organic microstructures appeared to be preserved in our Dales Gorge samples. We also examined the possible application of electron paramagnetic resonance spectroscopy (EPR) to carbonaceous matter in ancient silica-rich matrices, similar to Bourbin et al. (2013), using samples from the Brockman iron formation. While resonance associated with organic matter was largely unresolvable in the Brockman iron formation samples due to their low organic matter contents, large effects on the EPR spectra were apparent stemming from the presence of magnetic iron minerals, highlighting the need to carefully consider sample composition in EPR analyses targeting ancient organic matter. Collectively, this study highlights the added value of micro- to nano-scale techniques as applied to Precambrian metasediments containing traces of ancient life, for example in revealing the pre-metamorphic emplacement and three-dimensional structure of filaments in the Moodies Group, but also the potential drawbacks and pitfalls, such as the case of strong magnetic mineral interference in EPR analysis of organic matter in trace abundance in the Dales Gorge.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3