Cell-type deconvolution of bulk RNA-Seq from kidney using opensource bioinformatic tools

Author:

Riojas Angelica M.ORCID,Spradling-Reeves Kimberly D.,Christensen Clinton L.,Hall-Ursone Shannan,Cox Laura A.ORCID

Abstract

AbstractTraditional bulk RNA-Seq pipelines do not assess cell-type composition within heterogeneous tissues. Therefore, it is difficult to determine whether conflicting findings among samples or datasets are the result of biological differences or technical differences due to variation in sample collections. This report provides a user-friendly, open source method to assess cell-type composition in bulk RNA-Seq datasets for heterogeneous tissues using published single cell (sc)RNA-Seq data as a reference. As an example, we apply the method to analysis of kidney cortex bulk RNA-Seq data from female (N=8) and male (N=9) baboons to assess whether observed transcriptome sex differences are biological or technical, i.e., variation due to ultrasound guided biopsy collections. We found cell-type composition was not statistically different in female versus male transcriptomes based on expression of 274 kidney cell-type specific transcripts, indicating differences in gene expression are not due to sampling differences. This method of cell-type composition analysis is recommended for providing rigor in analysis of bulk RNA-Seq datasets from complex tissues. It is clear that with reduced costs, more analyses will be done using scRNA-Seq; however, the approach described here is relevant for data mining and meta analyses of the thousands of bulk RNA-Seq data archived in the NCBI GEO public database.Author SummaryThis method, which provides a simple method for assessing sampling biases in bulk RNA-Seq datasets with evaluation of cell-type composition, will aid researchers in assessing whether bulk RNA-Seq from different studies of the same heterogeneous tissue are comparable. The additional layer of information can help determine if differential gene expression observed is biological or technical, i.e., cell composition variation among study samples. The described method uses publicly available bioinformatics resources and does not require coding expertise or high-capacity computational processing. Development of tools accessible to scientists without computing expertise will contribute to greater rigor and reproducibility for bioinformatic analyses of transcriptome data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3