Lower-limb Nonparametric Functional Muscle Network: Test-retest Reliability Analysis

Author:

O’Keeffe Rory,Yang Jinghui,Mehrdad Sarmad,Rao Smita,Atashzar S. FarokhORCID

Abstract

AbstractObjectiveFunctional muscle network analysis has attracted a great deal of interest in recent years, promising high sensitivity to changes of intermuscular synchronicity, studied mostly for healthy subjects and recently for patients living with neurological conditions (e.g., those caused by stroke). Despite the promising results, the between- and within-session reliability of the functional muscle network measures are yet to be established. Here, for the first time, we question and evaluate the test-retest reliability of non-parametric lower-limb functional muscle networks for controlled and lightly-controlled tasks, i.e., sit-to-stand, and over-the-ground walking, respectively, in healthy subjects.MethodFifteen subjects (eight females) were included over two sessions on two different days. The muscle activity was recorded using 14 surface electromyography (sEMG) sensors. The intraclass correlation coefficient (ICC) of the within-session and between-session trials was quantified for the various network metrics, including degree and weighted clustering coefficient. In order to compare with common classical sEMG measures, the reliabilities of the root mean square (RMS) of sEMG and the median frequency (MDF) of sEMG were also calculated.ResultsThe ICC analysis revealed superior between-session reliability for muscle networks, with statistically significant differences when compared to classic measures.Conclusion and SignificanceThis paper proposed that the topographical metrics generated from functional muscle network can be reliably used for multi-session observations securing high reliability for quantifying the distribution of synergistic intermuscular synchronicities of both controlled and lightly controlled lower limb tasks. In addition, the low number of sessions required by the topographical network metrics to reach reliable measurements indicates the potential as biomarkers during rehabilitation.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3