Root associated bacterial communities and root metabolite composition are linked to nitrogen use efficiency in sorghum

Author:

Chai Yen Ning,Qi Yunhui,Goren Emily,Sheflin Amy M.ORCID,Tringe Susannah,Prenni Jessica E.,Liu Peng,Schachtman DanielORCID

Abstract

AbstractDevelopment of cereal crops with high nitrogen-use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improve crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse sorghum lines under sufficient and deficient nitrogen (N). Amplicon sequencing and untargeted gas chromatography-mass spectrometry (GC-MS) were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly influenced the root-associated bacterial communities and root metabolite composition of sorghum. Sorghum NUE was positively correlated with the bacterial richness and diversity in the rhizosphere. The greater alpha diversity in high NUE lines was associated with the decreased abundance of a dominant bacterial taxa,Pseudomonas. Multiple strong correlations were detected between root metabolites and rhizosphere bacterial communities in response to N stress and indicate that the shift in the sorghum microbiome due to low-N is associated with the root metabolites of the host plant. Taken together, our study provides new insight into the links between host genetic regulation of root metabolites and root-associated microbiome of sorghum genotypes differing in NUE and tolerance to low-N stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3