Hemi Manganese Exporters 1 and 2 enable manganese transport at the plasma membrane in cyanobacteria

Author:

Reis Mara,Brandenburg FabianORCID,Knopp Michael,Flachbart Samantha,Bräutigam Andrea,Metzger Sabine,Gould Sven B.ORCID,Eisenhut MarionORCID

Abstract

ABSTRACTManganese (Mn) is key to oxygenic photosynthesis as it catalyzes the splitting of water in photosystem II and functions as cofactor of multiple enzymes. A single ABC-type transporter, MntCAB, is so far established for the uptake of the metal under limiting conditions in cyanobacteria. It is unknown, how Mn is imported under replete conditions. We identified two proteins in the model cyanobacteriumSynechocystissp. PCC 6803, which are homologous to the unknown protein family 0016 (UPF0016) member manganese exporter (Mnx). In contrast to Mnx, which consists of six transmembrane domains, the new candidate proteins contain only three transmembrane domains. Hence, we named them hemi manganese exporter (Hmx) 1 and 2. Knock-out mutants inhmx1and/orhmx2showed sensitivity toward low Mn supplementation, and reduced intracellular Mn pools. Additional deletion ofmntChindered the cells to thrive unless external Mn was added and enhanced the depletion of their intracellular Mn pool. In accordance with the observed localization of Hmx1 and Hmx2 in the plasma membrane, we postulate a Mn uptake function for a heteromeric Hmx1/2 across the plasma membrane under a wide range of Mn concentrations and a supporting role for the MntCAB system under Mn-limiting conditions. On the basis of their phylogenies, we propose that Hmx1 and Hmx2 are the ancestral progenitors of eukaryote-type UPF0016 proteins with six transmembrane domains. The Mn transport function of Hmx1/2 underscores this as fundamental ancient feature of the UPF0016 family. Likely, Hmx1 and Hmx2 coevolved with the internalization of the oxygen-evolving complex.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3