Characterisation of the neonatal brain using myelin-sensitive magnetisation transfer imaging

Author:

Blesa Cábeza ManuelORCID,Vaher Kadi,York Elizabeth N.ORCID,Galdi Paola,Sullivan Gemma,Stoye David Q.,Hall Jill,Corrigan Amy E.,Quigley Alan J.,Waldman Adam D.,Bastin Mark E.,Thrippleton Michael J.,Boardman James P.ORCID

Abstract

AbstractA cardinal feature of the encephalopathy of prematurity is dysmaturation of developing white matter and subsequent hypomyelination. Magnetisation transfer imaging (MTI) offers surrogate markers for myelination including magnetisation transfer ratio (MTR) and magnetisation transfer saturation (MTsat). Using data from 105 neonates, we characterise MTR and MTsat in the developing brain and investigate how these markers are affected by gestational age at scan and preterm birth. We explore correlations of the two measures with fractional anisotropy (FA), radial diffusivity (RD) and T1w/T2w ratio which are commonly used markers of white matter integrity in early life. We used two complementary analysis methods: voxel-wise analysis across the white matter skeleton, and tract-of-interest analysis across 16 major white matter tracts. We found that MTR and MTsat positively correlate with gestational age at scan. Preterm infants at term-equivalent age had lower values of MTsat in the genu and splenium of the corpus callosum, while MTR was higher in central white matter regions, the corticospinal tract and the uncinate fasciculus. Correlations of MTI metrics with other MRI parameters revealed that there were moderate positive correlations between T1w/T2w and MTsat and MTR at voxel-level, but at tract-level FA had stronger positive correlations with these metrics. RD had the strongest correlations with MTI metrics, particularly with MTsat in major white matter tracts. The observed changes in MTI metrics are consistent with an increase in myelin density during early postnatal life, and lower myelination and cellular/axonal density in preterm infants at term-equivalent age compared to term controls. Furthermore, correlations between MTI-derived features and conventional measures from dMRI provide new understanding about the contribution of myelination to non-specific imaging metrics that are often used to characterise early brain development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3