The Equilibrium and Pandemic Waves of COVID-19 in the US

Author:

Hu Zixin,Hu XiaoxiORCID,Xu Tao,Zhang Kai,Lu Henry H,Zhao JinyingORCID,Boerwinkle Eric,Jin Li,Xiong Momiao

Abstract

AbstractImportanceRemoving the epidemic waves and reducing the instability level of an endemic critical point of COVID-19 dynamics are fundamental to the control of COVID-19 in the US.ObjectiveTo develop new mathematic models and investigate when and how will the COVID-19 in the US be evolved to endemic.Design, Setting, and ParticipantsTo solve the problem of whether mass vaccination against SARS-CoV-2 will ultimately end the COVID-19 pandemic, we defined a set of nonlinear ordinary differential equations as a mathematical model of transmission dynamics of COVID-19 with vaccination. Multi-stability analysis was conducted on the data for the daily reported new cases of infection from January 12, 2021 to December 12, 2022 across 50 states in the US using the developed dynamic model of COVID-19 and limit cycle theory.Main Outcomes and MeasuresEigenvalues and the reproduction number under the disease-free equilibrium point and endemic equilibrium point were used to assess the stability of the disease-free equilibrium point and endemic equilibrium point. Both analytic analysis and numerical methods were used to determine the instability level of new cases of COVID-19 in the US under the different types of equilibrium points and to investigate how the system moves back and forth between stable and unstable states of the system and how the pandemic COVD-19 will evolve to endemic in the US.ResultsMulti-stability analysis identified two types of critical equilibrium points, disease-free endemic equilibrium points in the COVID-19 transmission dynamic system. The transmissional, recovery, vaccination rates and vaccination effectiveness during the major transmission waves of COVID-19 across 50 states in the US were estimated. These parameters in the model varied over time and across the 50 states. The eigenvalues and the reproduction numbersR0andin the disease-free equilibrium point and endemic equilibrium point were estimated to assess stability and classify equilibrium points. They also varied from state to state. The impacts of the transmission and vaccination parameters on the stability of COVID-19 were simulated, and stability attractor regions of these parameters were found and ranked for all 50 states in the US. The US experienced five major epidemic waves, endemic equilibrium points of which across 50 states were all in unstable states. However, the combination of re-infection and vaccination (hybrid immunity) may provide strong protection against COVID-19 infection, and stability analysis showed that these unstable equilibrium points were toward stable points. Theoretical analysis and real data analysis showed that additional epidemic waves may be possible in the future, but COVID-19 across all 50 sates in the US is rapidly moving toward stable endemicity.Conclusions and RelevanceBoth stability analysis and observed epidemic waves in the US indicated that the pandemic might not end with the disappearance of the virus. However, after enough people gained immune protection from vaccination and from natural infection, COVID-19 would become an endemic disease, as the stability analysis showed. Educating the population about multiple epidemic waves of the transmission dynamics of COVID-19 and designing optimal vaccine rollout are crucial for controlling the pandemic of COVID-19 and its evolving to endemic.Key PointsQuestioThe US has already experienced five waves of the epidemic. We urgently need to know when and how will COVID-19 be evolved into endemic.FindingsTo solve the problem, we developed a mathematical model of transmission dynamics of COVID-19 with vaccination and performed a multi-stability analysis of COVID-19 transmission dynamics in the US. We found that COVID-19 dynamics of all 50 states in the US were getting closer and closer to endemic and stable states.MeaningCOVID-19 dynamics of all 50 states in the US are toward stable states and will be evolved to endemic in the near future.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3