Identification of cell type-specific gene targets underlying thousands of rare diseases and subtraits

Author:

Murphy Kitty B.ORCID,Gordon-Smith Robert,Chapman Jai,Otani Momoko,Schilder Brian M.ORCID,Skene Nathan G.ORCID

Abstract

AbstractRare diseases (RDs) are uncommon as individual diagnoses, but as a group contribute to an enormous disease burden globally. However, partly due the low prevalence and high diversity of individual RDs, this category of diseases is understudied and under-resourced. The advent of large, standardised genetics databases has enabled high-throughput, comprehensive approaches that uncover new insights into the multi-scale aetiology of thousands of diseases. Here, using the Human Phenotype Ontology (9,677 annotated phenotypes) and multiple single-cell transcriptomic atlases (77 human cell types and 38 mouse cell types), we conducted >688,000 enrichment tests (x100,000 bootstrap iterations each) to identify >13,888 genetically supported cell type-phenotype associations. Our results recapitulate well-known cell type-phenotype relationships, and extend our understanding of these diseases by pinpointing the genes linking phenotypes to specific cell (sub)types. We also reveal novel cell type-phenotype relationships across disparate branches of clinical disease (e.g. the nervous, cardiovascular, and immune systems). Next, we introduce a computational pipeline to prioritise gene targets with high cell type-specificity to minimise off-target effects and maximise therapeutic potential. To broaden the impact of our study, we have released two R packages to fully replicate our analyses, as well as a series of interactive web apps so that stakeholders from a variety of backgrounds may further explore and utilise our findings. Together, we present a promising avenue for systematically and robustly uncovering the multi-scale aetiology of RDs at scale.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3