Amino acid substitutions in norovirus VP1 dictate cell tropism via an attachment process dependent on membrane mobility

Author:

Mills Jake T.,Minogue Susanna C.,Snowden Joseph S.,Arden Wynter K.C.,Rowlands David J.ORCID,Stonehouse Nicola J.ORCID,Wobus Christiane E.,Herod Morgan R.ORCID

Abstract

AbstractViruses interact with receptors on the cell surface to initiate and co-ordinate infection. The distribution of receptors on host cells can be a key determinant of viral tropism and host infection. Unravelling the complex nature of virus-receptor interactions is, therefore, of fundamental importance to understanding viral pathogenesis. Noroviruses are non-enveloped, icosahedral, positive-sense RNA viruses of global importance to human health, with no approved vaccine or antiviral agent available. Here we use murine norovirus as a model for the study of molecular mechanisms of virus-receptor interactions. We show that variation at a single amino acid residue in the major viral capsid protein had a key impact on the interaction between virus and receptor. This variation did not affect virion production or virus growth kinetics, but a specific amino acid was rapidly selected through evolution experiments, and significantly improved cellular attachment when infecting immune cells in suspension. However, reducing plasma membrane mobility counteracted this phenotype, providing insight into for the role of membrane fluidity and receptor recruitment in norovirus cellular attachment. When the infectivity of a panel of recombinant viruses with single amino acid variations was comparedin vivo, there were significant differences in the distribution of viruses in a murine model, demonstrating a role in cellular tropismin vivo. Overall, these results highlight the importance of lipid rafts and virus-induced receptor recruitment in viral infection, as well as how capsid evolution can greatly influence cellular tropism, within-host spread and pathogenicity.ImportanceAll viruses initiate infection by utilising receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important to developing novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilise the murine norovirus model system to show that variation in a single amino acid of the major capsid protein can alone can affect viral infectivity through improved attachment to suspension cells. Reducing plasma membrane mobility reduced infectivity, providing an insight into the importance of membrane mobility for receptor recruitment. Furthermore, variation at this site was able to change viral distribution in a murine model, illustrating how in-host capsid evolution can influence viral infectivity and immune evasion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3