The impact of chemical fixation on the microanatomy of mouse brain tissue

Author:

Idziak Agata,Inavalli V.V.G. KrishnaORCID,Bancelin StephaneORCID,Arizono MisaORCID,Nägerl U. ValentinORCID

Abstract

AbstractChemical fixation using paraformaldehyde (PFA) is a standard step for preserving cells and tissues for subsequent microscopic analyses such as immunofluorescence or electron microscopy. However, chemical fixation may introduce physical alterations in the spatial arrangement of cellular proteins, organelles and membranes. With the increasing use of super-resolution microscopy to visualize cellular structures with nanometric precision, assessing potential artifacts - and knowing how to avoid them - takes on special urgency.We addressed this issue by taking advantage of live-cell super-resolution microscopy that makes it possible to directly observe the acute effects of PFA on organotypic brain slices, allowing us to compare tissue integrity in a ‘before-and-after’ experiment. We applied super-resolution shadow imaging to assess the structure of the extracellular space (ECS) and regular super-resolution microscopy of fluorescently labeled neurons and astrocytes to quantify key neuroanatomical parameters.While the ECS volume fraction and micro-anatomical organization of astrocytes remained largely unaffected by the PFA treatment, we detected subtle changes in dendritic spine morphology and observed substantial damage to cell membranes. Our experiments show that PFA application via immersion does not cause a noticeable shrinkage of the ECS in brain slices, unlike the situation in transcardially perfused animals where the ECS typically becomes nearly depleted.In addition to the super-resolved characterization of fixation artefacts in identified cellular and tissue compartments, our study outlines an experimental strategy to evaluate the quality and pitfalls of various fixation protocols for the molecular and morphological preservation of cells and tissues.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3