NaV1.7 mRNA and protein expression in putative projection neurons of the human spinal dorsal horn

Author:

Shiers Stephanie,Funk Geoffrey,Cervantes Anna,Horton Peter,Dussor Gregory,Hennen Stephanie,Price Theodore J.ORCID

Abstract

AbstractNaV1.7, a membrane-bound voltage-gated sodium channel, is preferentially expressed along primary sensory neurons, including their peripheral & central nerve endings, axons, and soma within the dorsal root ganglia and plays an integral role in amplifying membrane depolarization and pain neurotransmission. Loss- and gain-of-function mutations in the gene encoding NaV1.7,SCN9A, are associated with a complete loss of pain sensation or exacerbated pain in humans, respectively. As an enticing pain target supported by human genetic validation, many compounds have been developed to inhibit NaV1.7 but have disappointed in clinical trials. The underlying reasons are still unclear, but recent reports suggest that inhibiting NaV1.7 in central terminals of nociceptor afferents is critical for achieving pain relief by pharmacological inhibition of NaV1.7. We report for the first time that NaV1.7 mRNA is expressed in putative projection neurons (NK1R+) in the human spinal dorsal horn, predominantly in lamina 1 and 2, as well as in deep dorsal horn neurons and motor neurons in the ventral horn. NaV1.7 protein was found in the central axons of sensory neurons terminating in lamina 1-2, but also was detected in the axon initial segment of resident spinal dorsal horn neurons and in axons entering the anterior commissure. Given that projection neurons are critical for conveying nociceptive information from the dorsal horn to the brain, these data support that dorsal horn NaV1.7 expression may play an unappreciated role in pain phenotypes observed in humans with geneticSCN9Amutations, and in achieving analgesic efficacy in clinical trials.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Allen Institute for Brain Science (2022a) Allen Mouse Brain Atlas [Scn9a]. In: Allen Institute for Brain Science

2. Allen Institute for Brain Science (2022b) Allen Human Brain Atlas [SCN9A].

3. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets;Front Pain Res (Lausanne),2021

4. Sensory neuron–derived Na V 1.7 contributes to dorsal horn neuron excitability

5. Nociceptor Overexpression of Na(V)1.7 Contributes to Chronic Muscle Pain Induced by Early-Life Stress;J Pain,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3