Human Arm Redundancy - A New Approach for the Inverse Kinematics Problem

Author:

Barliya Avi,Krausz Nili,Naaman Hila,Chiovetto Enrico,Giese Martin,Flash Tamar

Abstract

AbstractThe inverse kinematics problem deals with the question of how the nervous system coordinates movement to resolve redundancy, such as in the case of arm reaching movements where more degrees of freedom are available at the joint versus hand level. In particular, this work focuses on determining which coordinate frames can best represent human movements, allowing the motor system to solve the inverse kinematics problem in the presence of kinematic redundancies. In particular, in this work we used a multi-dimensional sparse source separation method called FADA to derive sets of basis functions (here called sources) for both the task and joint spaces, with joint space being represented in terms of either the absolute or anatomical joint angles. We assessed the similarities between the joint and task sources in each of these joint representations. We found that the time-dependent profiles of the absolute reference frame’s sources show greater similarity to those of the corresponding sources in the task space. This result was found to be statistically significant. Hence, our analysis suggests that the nervous system represents multi-joint arm movements using a limited number of basis functions, to allow for simple transformations between task and joint spaces. Importantly, joint space seems to be represented in terms of an absolute reference frame to achieve successful performance and simplify inverse kinematics transformations in the face of the existing kinematic redundancies. Further studies will be needed to determine the generalizability of this finding and its implications for neural control of movement.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3