Abstract
SummaryNeuronal circuits evolve as a precisely patterned network. In this context, a growing neuron must locate the appropriate target area on a neurite of a neighbouring cell with which to connect. Controlled target selection involves dendritic filopodial contacts and requires the exact apposition of synaptic components. Calcium signalling has been postulated to trigger the transformation from dendritic filopodia into functional synapses. However, calcium is a rather unspecific signalling system, and it needs to be clarified how the exact development of synaptic connections is controlled. Similarly, Wnt/β-catenin signalling promotes synapse formation; however, how secreted Wnts induce and maintain synapses on neuronal dendrites is not well understood. Here, we show that Wnt-7a is tethered to the tips of dynamic dendritic filopodia during spine formation in human cortical neurons. These filopodia can activate Wnt signalling precisely at the contact sites on the dendrites of an adjacent neuron. Subsequently, local calcium transients can be observed at these Wnt-positive contact sites. Depleting either the filopodial-loaded Wnt or the extracellular calcium pool blocks the clustering of pre- and post-synaptic markers, hence the establishment of stable connections. Therefore, we postulate that local Wnt-7a signalling from the tip of the dendritic filopodia, verified by simultaneous calcium signalling, provides an elegant mechanism for orchestrating focal synapse maturation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献