Improving Computational Fluid Dynamics Simulations of Coiled Aneurysms Using Finite Element Modeling

Author:

Fillingham Patrick,Bhathal Julia Romero,Marsh Laurel M.M.,Barbour Michael C.,Kurt Mehmet,Ionita Ciprian N.,Davies Jason M.,Aliseda Alberto,Levitt Michael R.

Abstract

ABSTRACTCerebral aneurysms are a serious clinical challenge, with ∼half resulting in death or disability. Treatment via endovascular coiling significantly reduces the chances of rupture, but the technique has failure rates between 25-40%. This presents a pressing need to develop a method for determining optimal coil deployment strategies. Quantification of aneurysm hemodynamics through computational fluid dynamics (CFD) has the potential to significantly improve the understanding of the mechanics of aneurysm coiling and improve treatment outcomes, but accurately representing the coil mass in CFD simulations remains a challenge. We have used the Finite Element Method (FEM) for simulating patient-specific coil deployment based on mechanical properties and coil geometries provided by the device manufacturer for n=4 ICA aneurysms for which 3D printedin vitromodels were also generated, coiled, and scanned using ultra-high resolution synchrotron micro-CT. The physical and virtual coil geometries were voxelized onto a binary structured grid and porosity maps were generated for geometric comparison. The average binary accuracy score is 0.836 and the average error in porosity map is 6.3%. We then conduct patient-specific CFD simulations of the aneurysm hemodynamics using virtual coils geometries, micro-CT generated oil geometries, and using the porous medium method to represent the coil mass. Hemodynamic parameters of interest including were calculated for each of the CFD simulations. The average error across hemodynamic parameters of interest is ∼19%, a 58% reduction from the average error of the porous media simulations, demonstrating a marked improvement in the accuracy of CFD simulations using FEM generated coil geometries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3