Abstract
ABSTRACTGenerating high-coverage sequencing coverage at select genomic loci has extensive applications in both research science and genetic medicine. Long-read sequencing technologies (e.g. nanopore sequencing) have expanded our ability to generate sequencing data in regions (e.g. repetitive elements) that are difficult to interrogate with short-read sequencing methods. In work presented here, we expand on our previous work using CRISPR/Cas9 for targeted nanopore sequencing by usingin vitrotranscribed guideRNAs, with 1100 guideRNAs in a single experiment. This approach decreases the cost per guideRNA, increases the number of guideRNAs that can be multiplexed in a single experiment, and provides a way to rapidly screen numerous guideRNAs for cutting efficiency. We apply this strategy in multiple patient-derived pancreatic cancer cell lines, demonstrating its ability to unveil structural variation in “deletion hotspots” around the tumor suppressor genesp16(CDKN2A), andSMAD4.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献