Spectral methods for prediction uncertainty quantification in Systems Biology

Author:

Deneer Anna,Molenaar Jaap,Fleck ChristianORCID

Abstract

AbstractUncertainty is ubiquitous in biological systems. These uncertainties can be the result of lack of knowledge or due to a lack of appropriate data. Additionally, the natural variability of biological systems caused by intrinsic noise, e.g. in stochastic gene expression, leads to uncertainties. With the help of numerical simulations the impact of these uncertainties on the model predictions can be assessed, i.e. the impact of the propagation of uncertainty in model parameters on the model response can be quantified. Taking this into account is crucial when the models are used for experimental design, optimization, or decision-making, as model uncertainty can have a significant effect on the accuracy of model predictions. We focus here on spectral methods to quantify prediction uncertainty based on a probabilistic framework. Such methods have a basis in, e.g., computational mathematics, engineering, physics, and fluid dynamics, and, to a lesser extent, systems biology. In this chapter, we highlight the advantages these methods can have for modelling purposes in systems biology and do so by providing a novel and intuitive scheme. By applying the scheme to an array of examples we show its power, especially in challenging situations where slow converge due to high-dimensionality, bifurcations, and spatial discontinuities play a role.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3