Conditioning electrical stimulation fails to enhance sympathetic axon regeneration

Author:

Tian TinaORCID,Harris Alandrea,Owyoung JordanORCID,SiMa HaoMin,Ward Patricia J.ORCID

Abstract

AbstractPeripheral nerve injuries are common, and there is a critical need for the development of novel therapeutics to complement surgical repair. Conditioning electrical stimulation (CES) is a novel variation to the well-studied perioperative electrical stimulation, both of which have displayed success in enhancing the regeneration of motor and sensory axons in an injured peripheral nerve. CES is a clinically attractive alternative not only because of its ability to be performed at the bedside prior to a scheduled nerve repair surgery, but it has also been shown to be superior to perioperative electrical stimulation in the enhancement of motor and sensory regeneration. However, the effects of CES on sympathetic regeneration are unknown. Therefore, we tested the effects of two clinically relevant CES paradigms on sympathetic axon regeneration and distal target reinnervation. Because of the long history of evidence for the enhancement of motor and sensory axons in response to electrical stimulation, we hypothesize that CES will also enhance sympathetic axon regeneration. Our results indicate that the growth of sympathetic axons is acutely inhibited by CES; however, at a longer survival time point post-injury, there is no difference between sham CES and the CES groups. There has been evidence to suggest that the growth of sympathetic axons is inhibited by a conditioning lesion, and that sympathetic axons may respond to electrical stimulation by sprouting rather than elongation. Our data indicate that sympathetic axons may retain some regenerative ability after CES, but no enhancement is exhibited, which may be accounted for by the inability of the current clinically relevant electrical stimulation paradigm to recruit the small-caliber sympathetic axons into activity. Further studies will be needed to optimize electrical stimulation parameters in order to enhance the regeneration of all neuron types.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3