Abstract
AbstractHorizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbour class 1 integrons. We developed a modified version of epicPCR (emulsion,pairedisolation andconcatenationpolymerasechainreaction) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multi-gene loci of interest. We also identified theRhizobactergenus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts towards hotspots of class 1 integron-mediated dissemination of AMR.SynopsisWe present a novel single-cell genomic surveillance technology for identifying environmental bacterial hosts of a class of mobile genetic elements that are linked to anthropogenic pollution and contribute to the dissemination of antimicrobial resistance.
Publisher
Cold Spring Harbor Laboratory