Deep learning-based codon optimization with large-scale synonymous variant datasets enables generalized tunable protein expression

Author:

Constant David A.,Gutierrez Jahir M.,Sastry Anand V.,Viazzo Rebecca,Smith Nicholas R.,Hossain Jubair,Spencer David A.,Carter Hayley,Ventura Abigail B.,Louie Michael T. M.,Kohnert Christa,Consbruck Rebecca,Bennett Joshua,Crawford Kenneth A.,Sutton John M.,Morrison Anneliese,Steiger Andrea K.,Jackson Kerianne A.,Stanton Jennifer T.,Abdulhaqq Shaheed,Hannum Gregory,Meier Joshua,Weinstock Matthew,Gander Miles

Abstract

AbstractIncreasing recombinant protein expression is of broad interest in industrial biotechnology, synthetic biology, and basic research. Codon optimization is an important step in heterologous gene expression that can have dramatic effects on protein expression level. Several codon optimization strategies have been developed to enhance expression, but these are largely based on bulk usage of highly frequent codons in the host genome, and can produce unreliable results. Here, we develop deep contextual language models that learn the codon usage rules from natural protein coding sequences across members of theEnterobacteralesorder. We then fine-tune these models with over 150,000 functional expression measurements of synonymous coding sequences from three proteins to predict expression inE. coli. We find that our models recapitulate natural context-specific patterns of codon usage and can accurately predict expression levels across synonymous sequences. Finally, we show that expression predictions can generalize across proteins unseen during training, allowing forin silicodesign of gene sequences for optimal expression. Our approach provides a novel and reliable method for tuning gene expression with many potential applications in biotechnology and biomanufacturing.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3