Abstract
ABSTRACTBACKGROUNDChatGPT, a popular new large language model (LLM) built by OpenAI, has shown impressive performance in a number of specialized applications. Despite the rising popularity and performance of AI, studies evaluating the use of LLMs for clinical decision support are lacking.PURPOSETo evaluate ChatGPT’s capacity for clinical decision support in radiology via the identification of appropriate imaging services for two important clinical presentations: breast cancer screening and breast pain.MATERIALS AND METHODSWe compared ChatGPT’s responses to the American College of Radiology (ACR) Appropriateness Criteria for breast pain and breast cancer screening. Our prompt formats included an open-ended (OE) format, where ChatGPT was asked to provide the single most appropriate imaging procedure, and a select all that apply (SATA) format, where ChatGPT was given a list of imaging modalities to assess. Scoring criteria evaluated whether proposed imaging modalities were in accordance with ACR guidelines.RESULTSChatGPT achieved an average OE score of 1.83 (out of 2) and a SATA average percentage correct of 88.9% for breast cancer screening prompts, and an average OE score of 1.125 (out of 2) and a SATA average percentage correct of 58.3% for breast pain prompts.CONCLUSIONOur results demonstrate the feasibility of using ChatGPT for radiologic decision making, with the potential to improve clinical workflow and responsible use of radiology services.
Publisher
Cold Spring Harbor Laboratory
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献