Longitudinal and Quantitative Fecal Shedding Dynamics of SARS-CoV-2, Pepper Mild Mottle Virus and CrAssphage

Author:

Arts Peter J.ORCID,Kelly J. Daniel,Midgley Claire M.,Anglin Khamal,Lu Scott,Abedi Glen R.,Andino RaulORCID,Bakker Kevin M.ORCID,Banman Bryon,Boehm Alexandria B.ORCID,Briggs-Hagen Melissa,Brouwer Andrew F.ORCID,Davidson Michelle C.,Eisenberg Marisa C.ORCID,Garcia-Knight Miguel,Knight SterlingORCID,Peluso Michael J.ORCID,Pineda-Ramirez Jesus,Sanchez Ruth Diaz,Saydah Sharon,Tassetto Michel,Martin Jeffrey N.,Wigginton Krista R.

Abstract

AbstractWastewater-based epidemiology (WBE) emerged during the COVID-19 pandemic as a scalable and broadly applicable method for community-level monitoring of infectious disease burden, though the lack of high-quality, longitudinal fecal shedding data of SARS-CoV-2 and other viruses limits the interpretation and applicability of wastewater measurements. In this study, we present longitudinal, quantitative fecal shedding data for SARS-CoV-2 RNA, as well as the commonly used fecal indicators Pepper Mild Mottle Virus (PMMoV) RNA and crAss-like phage (crAssphage) DNA. The shedding trajectories from 48 SARS-CoV-2 infected individuals suggest a highly individualized, dynamic course of SARS-CoV-2 RNA fecal shedding, with individual measurements varying from below limit of detection to 2.79×106gene copies/mg - dry mass of stool (gc/mg-dw). Of individuals that contributed at least 3 samples covering a range of at least 15 of the first 30 days after initial acute symptom onset, 77.4% had at least one positive SARS-CoV-2 RNA stool sample measurement. We detected PMMoV RNA in at least one sample from all individuals and in 96% (352/367) of samples overall; and measured crAssphage DNA above detection limits in 80% (38/48) of individuals and 48% (179/371) of samples. Median shedding values for PMMoV and crAssphage nucleic acids were 1×105gc/mg-dw and 1.86×103gc/mg-dw, respectively. These results can be used to inform and build mechanistic models to significantly broaden the potential of WBE modeling and to provide more accurate insight into SARS-CoV-2 prevalence estimates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3