Machine learning assisted discovery of synergistic interactions between environmental pesticides, phthalates, phenols, and trace elements in child neurodevelopment

Author:

Midya VishalORCID,Alcala Cecilia Sara,Rechtman Elza,Hertz-Picciotto Irva,Gennings Chris,Rosa Maria,Valvi Damaskini

Abstract

A growing body of literature suggests that higher developmental exposure to individual or mixtures of environmental chemicals (ECs) is associated with autism spectrum disorder (ASD). However, the effect of interactions among these ECs is challenging to study. We introduced a composition of the classical exposure-mixture Weighted Quantile Sum (WQS) regression, and a machine-learning method called signed iterative random forest (SiRF) to discover synergistic interactions between ECs that are (1) associated with higher odds of ASD diagnosis, (2) mimic toxicological interactions, and (3) are present only in a subset of the sample whose chemical concentrations are higher than certain thresholds. In the case-control Childhood Autism Risks from Genetics and Environment study, we evaluated multi-ordered synergistic interactions among 62 ECs measured in the urine samples of 479 children in association with increased odds for ASD diagnosis (yes vs. no). WQS-SiRF discovered two synergistic two-ordered interactions between (1) trace-element cadmium(Cd) and alkyl-phosphate pesticide - diethyl-phosphate(DEP); and (2) 2,4,6-trichlorophenol(TCP-246) and DEP metabolites. Both interactions were suggestively associated with increased odds of ASD diagnosis in a subset of children with urinary concentrations of Cd, DEP, and TCP-246 above the 75thpercentile. This study demonstrates a novel method that combines the inferential power of WQS and the predictive accuracy of machine-learning algorithms to discover interpretable EC interactions associated with ASD.SynopsisThe effect of interactions among environmental chemicals on autism spectrum disorder (ASD) diagnosis is challenging to study. We used a combination of Weighted Quantile Sum regression and machine-learning tools to study multi-ordered synergistic interactions between environmental chemicals associated with higher odds of ASD diagnosis.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3