Classification performance bias between training and test sets in a limited mammography dataset

Author:

Hou RuiORCID,Lo Joseph Y.,Marks Jeffrey R.,Hwang E. Shelley,Grimm Lars J.

Abstract

AbstractObjectivesTo assess the performance bias caused by sampling data into training and test sets in a mammography radiomics study.MethodsMammograms from 700 women were used to study upstaging of ductal carcinoma in situ. The dataset was repeatedly shuffled and split into training (n=400) and test cases (n=300) forty times. For each split, cross-validation was used for training, followed by an assessment of the test set. Logistic regression with regularization and support vector machine were used as the machine learning classifiers. For each split and classifier type, multiple models were created based on radiomics and/or clinical features.ResultsArea under the curve (AUC) performances varied considerably across the different data splits (e.g., radiomics regression model: train 0.58-0.70, test 0.59–0.73). Performances for regression models showed a tradeoff where better training led to worse testing and vice versa. Cross-validation over all cases reduced this variability, but required samples of 500+ cases to yield representative estimates of performance.ConclusionsIn medical imaging, clinical datasets are often limited to relatively small size. Models built from different training sets may not be representative of the whole dataset. Depending on the selected data split and model, performance bias could lead to inappropriate conclusions that might influence the clinical significance of the findings. Optimal strategies for test set selection should be developed to ensure study conclusions are appropriate.

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. American Cancer Society. Breast Cancer Facts & Figures 2019-2020. Atlanta: American Cancer Society, Inc. 2019.

2. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up

3. Long-term outcome of DCIS patients: p53 as a biomarker of ipsilateral recurrence;Journal of Clinical Oncology,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3