NetSyn: genomic context exploration of protein families

Author:

Stam MarkORCID,Langlois Jordan,Chevalier Céline,Reboul GuillaumeORCID,Bastard KarineORCID,Médigue ClaudineORCID,Vallenet DavidORCID

Abstract

AbstractBackgroundThe growing availability of large genomic datasets presents an opportunity to discover novel metabolic pathways and enzymatic reactions profitable for industrial or synthetic biological applications. Efforts to identify new enzyme functions in this substantial number of sequences cannot be achieved without the help of bioinformatics tools and the development of new strategies. The classical way to assign a function to a gene uses sequence similarity. However, another way is to mine databases to identify conserved gene clusters (i.e. syntenies) as, in prokaryotic genomes, genes involved in the same pathway are frequently encoded in a single locus with an operonic organisation. This Genomic Context (GC) conservation is considered as a reliable indicator of functional relationships, and thus is a promising approach to improve the gene function prediction.MethodsHere we present NetSyn (Network Synteny), a tool, which aims to cluster protein sequences according to the similarity of their genomic context rather than their sequence similarity. Starting from a set of protein sequences of interest, NetSyn retrieves neighbouring genes from the corresponding genomes as well as their protein sequence. Homologous protein families are then computed to measure synteny conservation between each pair of input sequences using a GC score. A network is then created where nodes represent the input proteins and edges the fact that two proteins share a common GC. The weight of the edges corresponds to the synteny conservation score. The network is then partitioned into clusters of proteins sharing a high degree of synteny conservation.ResultsAs a proof of concept, we used NetSyn on two different datasets. The first one is made of homologous sequences of an enzyme family (the BKACE family, previously named DUF849) to divide it into sub-families of specific activities. NetSyn was able to go further by providing additional subfamilies in addition to those previously published. The second dataset corresponds to a set of non-homologous proteins consisting of different Glycosyl Hydrolases (GH) with the aim of interconnecting them and finding conserved operon-like genomic structures. NetSyn was able to detect the locus of Cellvibrio japonicus for the degradation of xyloglucan. It contains three non-homologous GH and was found conserved in fourteen bacterial genomes.DiscussionNetSyn is able to cluster proteins according to their genomic context which is a way to make functional links between proteins without taking into count their sequence similarity only. We showed that NetSyn is efficient in exploring large protein families to define iso-functional groups. It can also highlight functional interactions between proteins from different families and predicts new conserved genomic structures that have not yet been experimentally characterised. NetSyn can also be useful in pinpointing mis-annotations that have been propagated in databases and in suggesting annotations on proteins currently annotated as “unknown”. NetSyn is freely available athttps://github.com/labgem/netsyn.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3