An INDEL genomic approach to explore population diversity of phytoplankton :Bathycoccus, a case study

Author:

Devic Martine,Mariac Cédric,Vergé Valérie,Schatt Philipe,Dennu Louis,Lozano Jean-Claude,Bouget François-Yves,Sabot FrançoisORCID

Abstract

AbstractAlthough metabarcoding has generated large dataset on world-wide phytoplankton species diversity, little is known about the intraspecies diversity underlying adaptation to environmental niches. To gain insight into population diversity, a novel INDEL based method was developed onBathycoccus prasinos. Oxford Nanopore Technology (ONT) sequencing was first used to characterise structural variants (SV) among the genomes ofBathycoccussampled from geographically distinct regions in the world ocean. Markers derived from INDEL were validated by PCR and sequencing in the world-wide strains. These markers were then used to genotype 55Bathycoccusstrains isolated during the winter bloom 2018-2019 in the bay of Banyuls-sur-Mer. With five markers, eight Multi Loci Genotypes (MLG) were determined, two of which represented 53% and 29% of the isolates. Physiological studies confirmed that isolates are phenotypically different, cells isolated in February growing better at low temperature than those isolated in December and January. When tested directly on environmental samples, two diversity markers showed a similar allele frequency in sea water as in individualBathycoccusstrains isolated at the same period. We conclude that these markers constitute a resource to identify the most abundant variant alleles in a given bloom. A follow-up on three consecutive blooms revealed differences in allele abundance during the course of a bloom, particularly at initiation and between years. This INDEL-based genotyping constitutes a new methodological approach that may be used to assess the population structure and diversity of other species.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3