Neuromuscular Basis ofDrosophilaLarval Rolling Escape Behavior

Author:

Cooney Patricia C.ORCID,Huang Yuhan,Li WenzeORCID,Perera Dulanjana M.,Hormigo Richard,Tabachnik Tanya,Godage Isuru S.,Hillman Elizabeth M.C.ORCID,Grueber Wesley B.ORCID,Zarin Aref A.ORCID

Abstract

AbstractWhen threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. InDrosophilalarvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally-Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, the muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larva’s circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression lead to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior, and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.Significance StatementTo escape from dangerous stimuli, animals execute escape behaviors that are fundamentally different from normal locomotion. The rolling escape behavior of Drosophila larvae consists of C-shaped bending and rolling. However, the muscle contraction patterns that lead to rolling are poorly understood. We find that following the initial body bending, muscles contract in a circumferential wave around the larva as they enter the bend, maintaining unidirectional rolling that resembles cylinder rolling on a surface. We study the structure of motor circuits for rolling, inhibit different motor neurons to determine which muscles are essential for rolling, and propose circuit and biomechanical models for roll generation. Our findings provide insights into how motor circuits produce diverse motor behaviors.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3